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A design of experiment (DoE) approach is presented for the optimization of Alendronate-hydroxyapatite
nanoparticles’ synthesis. The synthesis was performed using the chemical precipitation technique from
calcium nitrate, diammonium hydrogen phosphate and alendronate. Synthesis temperature, reactant addition
rate and ripening time were chosen as the most relevant experimental factors for our synthesis. Design of
Experiments was used in order to measure these conclusive process parameters and their effect on
controlling some final nanoparticles parameters, such us: alendronate incorporation efficiency
(IncorporationEfficiency, %), hydroxyapatite crystallite size (Size_XRD, nm), hydroxyapatite particle size
distribution (Size_DLS, Å). Our study found that better HA-AL incorporation efficiency and small nonoparticles
can be obtained using the following chemical process parameters: reaction temperature 30oC or smaller,
ripening time 108h and addition rate 0.1mol/min. The analysis of more than one nanoparticles characteristics
was possible using DoE software, MODDE 9.1. Thus, hydroxyapatite-alendronate incorporation efficiency
should be expected to increase with decreasing temperature below 300C, increasing the maturate time at
least 108h, at an addition rate of 0.1mol/min, in an N2 atmosphere. The same conditions will ensure
nanoparticles small size that would be more desirable for the application of implants.
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Hydroxyapatite (HA) is a calcium phosphate salt found
in human bone and teeth, with the difference that the
biological bone apatites contain only a very small
percentage of the total number of hydroxyl groups present
in highly purified synthetic calcium hydroxyapatites [1]. It
has been utilized extensively as implant material for many
years due to its superior biocompatibility and bone bonding
capacity and also due to its structural and compositional
similarity to that of the mineral phase of hard tissue in
human bones [2-4]. But osteoporotic patients vary from
normal subjects in bone mineral composition, bone mineral
content sand crystallinity [5]. A lot of effort must be spent
on improving therapies for fractures in the case of
osteoporotic patients.

The inclusion of bisphosphonates into the hydroxyapatite
layer is an important step for researchers who study bone
graft materials with a desirable local anti-osteoporosis
property for osteoporotic fracture [6]. A series of studies
evidenced advantages for the local drug delivery in
osteoporotic bone: local release of osteogenic agents in
osteoporotic fracture would increase bone strength and
quality and would reduce the period of bone healing,
improving implant fixation strength in osteoporotic bone
[7].

Nano-scale hydroxyapatite particles were synthesized
also for immobilizing heavy metals [8].

We used chemical precipitation method from calcium
nitrate, diammonium hydrogen phosphate and alendronate
for synthetize hydroxyapatite-alendronate (HA-AL)
composites.

The aim of this study is to monitor the production process,
to examine the influence of each process variables on HA-
AL physicochemical properties and to determine the best
set of process variables to produce HA-AL powder of
desired characteristics.

The aim of this research is to apply DoE and to create
mathematical models that will help researchers, providing
the highest reliability, lower process costs and improving
powder quality.

A screening DoE was conducted to identify the most
important process parameters using a Two-level Full
Factorial design, interaction model, with the aid of MODDE
9.1 software.

Design of Experiments is the only technique that enables
researchers to observe interaction effects that can improve
product quality and obstruct process failure [9]. DoE
validates process parameters in a single set of experiments
with less time, money and human resources.

Experimental part
Materials and methods

Different methods have been used for HA powders
synthesis [10-14]. The nanoparticles were synthesized by
the wet precipitation method in N2 atmosphere as
previously reported [15]. All chemicals were analytical
reagent (AR) grade: Ca(NO3)2· 4H2O (Sigma-Aldrich,
≥99%); (NH4)2HPO4 (Sigma-Aldrich, ≥99%); NH3 (Sigma-
Aldrich, 30 - 33%);  alendronate sodium salt (Axxora, ≥
97% ); HPLC Water (LiChrosolv® Merck); hydroxyapatite
powder (Sigma-Aldrich).

Calcium nitrate solution was initially heated to
temperatures in the range 30-90° C, and ammonium
phosphate was added under continuous stirring (600 rpm,
flow rate was varied between 0.1-5 mL/min, added with a
peristaltic pump). Aqueous solutions of 5 mM, 10 mM and
20 mM concentration of alendronate were used.

The second synthesis was obtaining hydroxyapatite-
alendronate by the addition of sodium alendronate
trihydrate into phosphate solution.
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The obtained product was maintained in the reaction
medium for 5 hours at a constant temperature under stirring,
then centrifuged at 10,000 rpm for 10 min (Eppendorf
centrifuge model 5804) and repeatedly washed with
distilled water to remove traces of ammonia. The powder
was kept overnight at 37°C.

In order to understand this process, we analyzed the
mathematical linkage between these complex set of
inputs (process conditions or factors) with outputs (powder
characteristics or responses). The mathematical model
was developed based on the screening analysis of DoE,
using Two-level Full Factorial design. These designs support
interaction models and require relatively few experiments
per explored factor, in which every level of each factor
occurs for every combination of the levels of the other
factors. Another investigation could be done with Box-
Behnken experimental design as Ailiesei et al. [16], but
with more experiments (17 experiments) than we done
(11 experiments) and the costs would be bigger.
Predictable behavior of outcomes were assessed [17] in
36 runs with a model fitted by Partial Least Square (PLS) in
the case of 5 factors and 2 responses.

To perform a Two-level Full Factorial design, we have
assigned a low level and a high level to each factor. These
settings are then used to construct an orthogonal array of
experiments. There are some common notations in use to
represent such factor settings. Usually, the low level of a
factor is denoted by –1 or just -, and the high level by +1 or
simply +. As a consequence, the center level, usually
chosen for replication, will be denoted by 0.

The experimental trials are represented in a design
matrix. Each row of the matrix represents an experiment;
each column represents the level of each factor. The Two-
level Full Factorial design for the three factors: temperature
(X1), the reactant addition rate (X2) and the ripping time
(X3), is shown in the design matrix presented in table 1.

The three experimental process parameters were
selected, each one at two levels: Temperature (X1): 300C -
900C, Addition Rate (X2): 0.1 mol/min-5 mol/min, Ripening
Time (X3): 0h-72h.

The responses (IncorporationEfficiency, Size_XRD,
Size_DLS) were measured in sequential order. The
experiments were run in a completely randomized order,
as we see in table 2, in order to provide that uncontrolled
factors did not influence the final results obtained.

Results and discussions
The experiments were carried out according to the

design matrix shown in table 2 in a fully randomized order
to avoid any systematic error and the outcomes are shown
in table 3.

Statistical analysis of the obtained data was performed
using MODDE 9.1 software. Analysis of the regression
coefficients of the linear polynomial models describing the
relationship between the responses and the tree factors
are presented in the following section.

The condition number is a tool that can be used to
evaluate the performance of our experiment design prior
to its execution. Our Condition number is 1.173<3, therefore
being considered a very good screening design.

Table 1
THE TWO-LEVEL
FULL FACTORIAL

DESIGN,
INTERACTION

MODEL, FOR THREE
FACTORS X1, X2, X3,
EACH WITH TWO

LEVELS, LOW (-) AND
HIGH (+)

Table 2
DESIGN MATRIX FOR SCREENING FULL

FACTORIAL DESIGN, EXPRESSED AS REAL VALUES
OF FACTORS
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Development of Incorporation Efficiency, Size_ XRD and
Size_DLS Models

As a result of analyzing the measured three responses
using MODDE software, the insignificant model terms
(p<0.05) were automatically eliminated. The analysis of
experimental data generated through DoE consists of three
primary stages.

The first stage, evaluation of raw data – Replicate plot
and histograms, concentrates on a general assessment of
regularities and specific features in the data. In Replicate
plot, the measured responses are plotted against the unique
number of each experiment. Since the variation in these
three replicates is much smaller than the variation in the
entire investigation series, as we can see in figure 1, we
can conclude that the replicate error will not confound the
data analysis.

It is advantageous in regression analysis if the data of
the response variables are normally distributed or nearly
so. All histograms have a heavy tail to the right, like in the
figure 2, therefore the variables may not be analyzed directly
and they need a logarithmic transformation.

The second stage, regression analysis and model
interpretation, involves the actual calculation of the model
linking the factors and the responses together, and the
interpretation of this model. Parameter R2 is a measure of
how well the regression model can be made to fit the raw
data, but R2 alone is not a sufficient indicator for probing
the validity of the model. A much better indication of the
validity of a regression model is given by the Q2 parameter,
called the goodness of prediction, and estimates the
predictive power of the model. It reflects the final goal of
modeling – predictions of new experiments. For a model
to pass this diagnostic test, both R2 and Q2 should have
high values and preferably not separated by more than 0.2-
0.3. A substantially larger difference constitutes a notice of
an unfit model. A Q2>0.5 should be consider as good and
Q2>0.9 as excellent, but these limits are application
dependent. Model validity might be low in very good models
due to high sensitivity in the test or extremely good
replicates, like in IncorporationEfficiency model. A good fit
of the models was proved by statistical analysis, based on
R2=0.971 and Q2=0.728 values for IncorporationEfficiency
model and R2=0.91 and Q2=0.485 for Size_XRD model.

Model interpretation with Coefficient plot plays an
important role in the data analysis. According to figure 3,
there are some small and insignificant two-factor
interactions. These terms may be omitted and the model
refitted to the data. For IncorporationEfficiency model we
can see an important interactions between Temperature
and Ripening Time, Temperature and Addition Rate. The
important interactions for Size_XRD model are Temp*Rate
and Rate*Time, and for Size_DLS model: Rate*Time. We
now have a simpler models with better functional predictive
ability.

We can clearly see the positive and negative effects
over the three responses. The Addition Rate, Ripening Time,
Temperature*Addition Rate and Temperature*Ripening
Time were the factors which possess the most significant
main effect on Incorporation Efficiency. The order of
significance for these effects follows the order :
Rate>Temp*Time>Time>Temp*Rate.

The Ripening Time, Temperature and Temperature*
Addition Rate were the factors which have the most
significant main effect on Size_XRD, the two-factor
interaction Rate*Time has a minor influence. The order of

Table 3
DESIGN MATRIX FOR SCREENING FULL FACTORIAL DESIGN,

EXPRESSED AS REAL VALUES OF RESPONSES

Fig. 1 Replicate plot of
IncorporationEfficiency,

Size_XRD, Size_DLS

Fig. 2 Histogram of
Incorporation Efficiency,
Size_XRD and Size_DLS
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significance for these effects follows the order :
Time>Temp*Rate>Temp>Rate*Time.

The Ripening Time and Addition Rate*Ripening Time
were the factors which have the most significant main
effect on Size-DLS. The order of significance for these
effects follows the order: Time>Rate*Time.

The ANOVA results and its lack of fit test for our responses
have been analyzed. In ANOVA, two F-tests are performed:
the first one identifies the importance of the regression
model and we conclude this test is satisfied when p<0.5.
Our models are statistically significant as p=0.001 for
IncorporationEfficiency model, p=0.012 for Size_XRD
model and p=0.028 for Size_DLS model. The second test
confronts the model error and the replicate error. The model
shows good match to the data when a sufficient low model
error is obtained, that is the model has no lack of fit. Hence,
this later test is known as the lack of fit test and we say it

Fig. 5 Triple response
contour plot of

IncorporationEfficiency,
Size_DLS and Size_XRD at

Ripening time=108h

is satisfied when p>0.5. In the IncorporationEfficiency
model, p=0.087, which is larger than the reference value
(0.5) and, therefore, we conclude that the model has no
lack of fit. The same with Size_XRD model and Size_DLS
model, when p=0.137 and p=0.580, respectively.

The optimal regression model has been obtained so we
can execute the third stage of the data analysis, use of
regression model; the achieved model is utilized to predict
the best parameters at which to drive next experiments.

Figure 4 show a response contour plot created with the
factors Temperature and Addition Rate as axes and
Ripening Time fixed at 72 h.

To maximize the Incorporation Efficiency, we should
position new (verifying) experiments in the lower left-hand
corner, with low Temperature and low Addition Rate. We
can see that Incorporation Efficiency has greater value in
the lower left-hand corner of Incorporation Efficiency
contour plot for a greater value of Ripening Time.

Fig. 3 Regression
coefficients of

IncorporationEfficiency
model, Size_XRD model

and Size_DLS model

Fig. 4 Triple response contour plot of
IncorporationEfficiency, Size_DLS and

Size_XRD at Ripening time=72h
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The prevalent objective is that of maximizing the
IncorporationEfficiency and minimizing the Size_DLS and
we can point out a prediction view in figure 5 in which
predictions are made for factor settings expected to be
relevant for our goal. All predicted values unanimously
indicate that even better IncorporationEfficiency values are
achievable outside the explored experimental zone. Hence,
we should select one of these suggested values and use
them for the verifying experiment.

In the extrapolation phase, we get Incorporation
Efficiency=24.4746%, Size_XRD=199,807nm and
Size_DLS=323.867nm for Temperature=25, Addition
Rate=0.1 and Ripening Time=108.

Conclusions
Wet process has the advantage of low probability of

contamination in the time of processing and the process
costs are small. Its disadvantage is that the resulting
product can be greatly affected by even a slight difference
in the reactions conditions. So, design of experiments is
vital to the successful control of the chemical precipitation
process.

Full factorial 23 design is useful for screening few
numbers of factors in few experiments and to analyze their
influence on HA-AL properties.

Reaction temperature was reported in many studies to
affect predominantly the crystalline phase fraction,
crystallite size and, as a consequence, specific surface
area [18, 19]. Reaction temperature was found to affect
incorporation efficiency (greater incorporation for smaller
temperature). But we cannot decrease too much the
reaction temperature for to obtain a better incorporation
efficiency. Neamtu et al. [20] assessed the profile of
alendronate from hydroxyapatite-alendronate tablets to
improve the efficacy of alendronate.

The rate of reactant addition also affects the
characteristics of Al-HA powder.  At a constant Ripening
Time, a better incorporation efficiency was obtained at
smaller addition rate. Thus, we must decrease the addition
rate but it is impossible less than 0.1mol/min.

Maturation period has an important role in obtaining
better characteristics for alendronate-hydroxyapatite
powder. At a 108h of RipeningTime we obtain almost 25
for Incorporation efficiency, but at 36h or 72h of Ripening
Time we obtained less than 10 for Incorporation efficiency.

At a constant Ripening Time, as the reaction temperature
is decreased, the Size_XRD is also decreased, indicating a
decrease in final Al-HA crystallinity. At a temperature of
250C, Size_XRD has an average of 100nm for Ripening
Time=36h, 150nm for Ripening Time=72h and 200nm for
Ripening Time=108h. Thus, we observed that larger
agglomerates would be formed for relatively smaller
particles for a bigger period of maturation.

Better HA-AL IncorporationEfficiency and small
nonoparticles can be obtained using the following

chemical process parameters: Reaction temperature 30oC
or smaller, Ripening Time 108h and Addition rate 0.1mol/
min.

Thus, HA-AL Incorporation Efficiency should be
expected to increase with decreasing temperature below
300C and increasing the maturate time at least 108h, at an
addition rate of 0.1mol/min, in an N2 atmosphere. These
conditions will ensure small size nanoparticles synthesis
that would be more desirable for the application of implants.
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